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Abstract. We study random convex compact sets infinitely divisible
with respect to the Minkowski addition and establish a sufficient condi-
tion for their association as well as a necessary and sufficient condition for
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finitely divisible for convex hulls of unions are associated.

2000 AMS Mathematics Subject Classification: Primary: 60D05;
Secondary: 60EQ7.

Key words and phrases: Association, infinite association, M-infinite-
divisibility, U-infinite-divisibility, infinite divisibility for convex hulls of
unions, random closed set, random convex compact set.

1. INTRODUCTION

The notion and basic properties of association were described by Esary, Pro-
schan and Walkup in 1967 [4] in the context of random vectors, but the definition
of the concept admits a natural and straightforward generalization to a general
measurable space (.,.%.~) endowed with a partial order <. A random element
X € .7 is called associated if

Cov(f(X), g(X)) > 0

for all <-non-decreasing functions f, g : . — R for which the covariance is de-
fined. In the case of d-dimensional random vectors =< stands for the coordinate-
wise ordering whereas in our set-valued setting below = is the usual set-theoretic
inclusion C .

Association is a much deeper property than the positivity of covariance ma-
trix entries and it found its wide-ranging applications in mathematical theory of
reliability (see e.g. Barlow and Proschan [1], Burton and Waymire [3], Kwiecinski
and Szekli [8], Lindqvist [9] and the references therein) as well as in financial
mathematics (see e.g. Rachev and Xin [14]). For stochastic processes the problem
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of association of increments has been discussed for instance in contexts of Poisson
processes or birth-death processes (see e.g. Glasserman [6]).

A crucial example of associated processes are Poisson point processes on gen-
eral spaces; see Proposition 5.31 in [18]. We shall use this result in our paper, and
hence we quote it here as a proposition; see ibidem for details.

PROPOSITION 1.1. Each Poisson point process on a locally compact and sep-
arable space is associated with respect to the natural ordering on point measures.

Effective association criteria were studied for various interesting classes of
random vectors, a prominent example being infinitely divisible random vectors for
which a particularly elegant characterization of association was found, arising as
the sum of results by Pitt [13], Resnick [18] and Samorodnitsky [19] and further
described in detail by Houdré et al. [7]. For interesting new developments we refer
the reader also to Béuerle et al. [2]. Let X ~ ZD(a, ¥, v) be an infinitely divisible
random d-dimensional vector with the Lévy—Khinchin representation for charac-
teristic function ¢(t) = exp (¢(t; a, X, v)), with

1 .
it 5,0) = ift.a) = S(S6E) + [ (0 = 1= it u) - 1y () v(du),
R4
where a € R? is a vector, & € R? @ R? is the covariance matrix of the Gaussian
component, whereas v stands for the Lévy measure. We have then

PROPOSITION 1.2. A vector X ~ ID(a, X, v) is associated if all coefficients
0i; of the matrix ¥ are nonnegative and supp(v) C (R4)4 U (R_)4, where supp(v)
denotes the support of the measure v.

The converse is not true. Samorodnitsky [19] carried out a construction of an
associated infinitely divisible random vector (&1, &) € R? with Lévy measure v
such that v({z = (21, z2) € R? 122 < 0}) > 0. However, to make the suffi-
cient conditions of Proposition 1.2 necessary as well it is enough to strengthen
slightly the notion of association. If ¢(t) is the characteristic function of a vec-
tor X ~ ZD(a,X,v), then, for all s € Ry, exp (sw(t; a, X, 1/)) = ((p(t))s is the
characteristic function of some infinitely divisible vector X;. Moreover, Xg ~
ID(sa, s¥, sv). With this notation, a vector X ~ ZD(a, X, v) is infinitely asso-
ciated iff X is associated for all 0 < s < 1. Observe that by definition this is
the same as the association of the corresponding Lévy process. We have then (see
ibidem)

PROPOSITION 1.3. X ~ ID(a,X,v) is infinitely associated if and only if
0 > 0forall1 < i,j < dandsupp(v) C (Ry)4 U (R_)4.

The concept of association in context of max-infinitely-divisible random vec-
tors explains positivity of various dependency measures between components of
extreme value vectors. Recall that a random vector X € R? is max-infinitely-
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divisible if for every n € N there exist i.i.d. random vectors X1, Xn2, ..., Xnn
such that X =; max{X,1, Xn2,..., Xpn}. Following Resnick [17], Proposi-
tion 5.29, we quote

PROPOSITION 1.4. Every max-infinitely-divisible random vector Y € R® is
associated.

The purpose of this paper is to extend the above association criteria mak-
ing them applicable in a broad context of set-valued random elements, namely
for the so-called random closed sets. Write JF for the family of all closed subsets
of R? endowed with the usual Effros o-algebra generated by families
Frk :={F e€F, FNK =} for K ranging through the family K of all com-
pact subsets of R%. The Effros o-field is known to be the Borel o-field for the
so-called Fell topology which is compact on F; see [11], [12]. By a random closed
set (in R%) we shall mean each F-valued random element; see [11] and refer-
ences therein. By analogy with those for random vectors, different concepts of
infinite divisibility have been considered for random sets, including M-infinite-
divisibility (infinite divisibility with respect to the so-called Minkowski addition)
and U-infinite-divisibility (infinite divisibility with respect to set-theoretic unions);
see [11], [12] for extensive reference as well as for various applications of these
notions. Our goal is to establish association criteria for infinitely divisible random
sets. This is done in separate sections for various concepts of infinite divisibility.
First, M-infinite-divisibility is treated in Section 2 below. Next, in Section 3 we
study U-infinitely-divisible random closed sets as well as random convex compact
sets infinitely divisible for convex hulls of unions.

2. ASSOCIATION FOR M-INFINITELY-DIVISIBLE RANDOM SETS

The present section is devoted to random sets infinitely divisible with respect
to the Minkowski addition @, defined for A, B C R? by

Ao B={x+y, x€ A, yec B}

A deterministic compact set K is M-infinitely-divisible if for all n > 2 there exists
a convex set L,, such that

K=L,®...®L,.
~—_——

n

It turns out that a compact set is M-infinitely-divisible if and only if it is convex;
see Theorem 3.1.3 in [12]. Consequently, to avoid unnecessary technicalities the
theory of M-infinite-divisibility for random sets is predominantly restricted to the
family of random convex compact sets which enjoys the property of being closed
with respect to Minkowski sums. In formal terms, by a random convex compact
set we mean here a random element taking values in the family co.#” of convex
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compact sets in R?, endowed with the restriction of the Effros o-field induced by
the inclusion co.#” C .%, which is also easily verified to coincide with the Borel
o-field generated by the usual Hausdorff distance between compacts; moreover, the
corresponding topology is locally compact and separable; see [12], Appendix C.

DEFINITION 2.1 (3.2.16 in [12]). A random set X € co.# is M-infinitely-
divisible if for all n > 1 there exist random i.i.d. sets Z,1, ..., Z,, € co % such
that X =4 Z,1 D ... D Zpp-

Not unexpectedly, M-infinitely-divisible random convex compact sets admit a
characterization analogous to the Lévy—Khinchin representation. We follow [12],
Subsection 3.2.4, in our brief presentation below. Let A be a finite measure on
the space co.#” and let ITy = {X1,..., Xy}, where N ~ Po(A(co.%)), be the
Poisson point process on co.#” with intensity measure A. Then the random convex
compact set Z = X1 & ... & Xy is called the compound Poisson set with inten-
sity measure A and we write Z € Poisg (A). Now, a o-finite measure A on co. %" is
called a Lévy measure iff there exist finite measures A, on co.#” and convex com-
pact sets K, such that A,, T A and for Z,, € Poisg(A,) the sequence of random
convex compact sets { K, @ Z,,} converges weakly with respect to the Hausdorff
metric topology to a random convex compact set Z. The distribution of the set Z
will be also written as Z € Poisg(A). The presence of the inclusion sign € here
instead of a more natural equality (in law) is due to technical reasons. The deter-
ministic sets K, play the role of compensating constants so that the compound
M-sums do not diverge — the same shows up in the context of random vectors as
well, but there the compensating sequences are standardized, and thus uniquely
determined by the Lévy measures. Here an additional degree of freedom is present
due to the choice of K,,, and thus Poisg(A) is in fact the entire family of possi-
ble limits obtained in the above procedure corresponding to various compensation
schemes, whence the € notation above. Therefore, to avoid possible ambiguities a
standardized compensating scheme will be given in Proposition 2.1 below.

The following proposition gives the characterization of M-infinitely-divisible
random set X . Note that s(L) stands here for the Steiner point of the convex com-
pact set L defined as the vector-valued integral (1/v,) fsdfl h(L,u)u He1(du)
with respect to the (d — 1)-dimensional Hausdorff measure over the sphere in R¢
with vy being the volume of the unit ball (see Appendix F in [12]). The proof can
be found in [12], Subsection 3.2.4.

PROPOSITION 2.1. A random convex compact set X is M-infinitely-divisible
if and only if there exist
(i) a deterministic set K € co X,
(i1) a centered Gaussian random vector £ € R?,
(iii) a Lévy measure A on co X satisfying

J min (1, HS(L)HQ)A(dL) < 00, J min (1, ||L — s(L)||)A(dL) < oo
coX’ coX’
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such that X =43 & ® K & Z, where Z is the weak limit of the sequence of random
convex compact sets

Iy = i s(L)AdL)® Z,, n>1,
n-t<||LlI<1

with Z!, € Poisg(Ay,) and A,, being the restriction of A onto the family of convex

compact sets with the norm greater than n™'.

Roughly speaking, a random convex compact set X is M-infinitely-divisible
iff it arises as the M-sum of a deterministic set, a Gaussian random vector and a
compound Poisson set with intensity measure given by the Lévy measure. In the
sequel we shall write X ~ ZDM (K, ¥, A) for X as in Proposition 2.1, with 3
standing for the covariance matrix of &.

In the following theorem we provide a sufficient condition for an M-infinitely-
divisible random convex compact set to be associated. To some extent this may be
regarded as an equivalent of Proposition 1.2, but an important difference is present,
which is the lack of the Gaussian component.

THEOREM 2.1. If M-infinitely-divisible convex compact set X has no Gaus-
sian summand and its Lévy measure concentrates on the family of sets containing
the origin, then X is associated.

Proof. From the Lévy—Kchinchin-type representation in Proposition 2.1 we
know that the set X which satisfies our assumptions arises as the Minkowski sum
of a deterministic set K and a Poisson compound set Z € Poisg (A). If the mea-
sure A is finite, then Z is the Minkowski sum of the Poisson point process I1x
and its summands all contain the origin. When restricted to such sets containing
the origin, the Minkowski addition becomes a non-decreasing function from the
family of subsets of co.#” ordered by inclusion to co.#". Since the Poisson point
process I, is associated when regarded as a random subcollection of co. %™ (see
Proposition 1.1 above), Z is also associated as obtained from II, by application
of a non-decreasing co.# -valued mapping, because a non-decreasing function of
an associated set is again associated (see [4]). Of course, Z — K & Z is again
non-decreasing, so X is associated as well.

For a o-finite Lévy measure A we get our result from the fact that association
is preserved under the week limit; see [4]. =

By analogy with Proposition 1.2, bearing in mind the vector found by Samo-
rodnitsky [19], we do not expect that the converse is true. However, to overcome
this nuisance, following [19], for an M-infinitely-divisible X € ZDM(K,%, A)
and ¢t € (0, 1] we consider the random sets X (t) € ZDM (tK,t%, tA), obtainable
by putting X (t) =4 tK @ Vt£ © Z; and Z; € Poisg(tA). Note that this is a nat-
ural way to construct a set valued M-infinitely-divisible stochastic process, but we
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do not discuss such construction here as falling beyond the scope of the present
article. Here we only note that, should we choose to speak in terms of this con-
struction, the infinite association concept defined below would coincide with the
usual association of the set valued stochastic process X (t); see, e.g., Definition 2.5
in [2].

DEFINITION 2.2. X is infinitely associated if X (t) is associated for every
t € (0,1].

In Theorem 2.2 below we show that for infinitely associated random sets the
sufficient conditions from Theorem 2.1 become also necessary, by analogy with
Proposition 1.3 above. Before proceeding to this result we shall need some addi-
tional notation and auxiliary lemmas. An important instrument for our argument is
the support function of a closed set F, defined on R? as

h(F,u) = sup{(z,u); x € F};

see Subsection 3.1.2 in [12]. Clearly, this function is uniquely determined by its
restriction to the unit sphere S%~'. Roughly speaking, for v € S?~! the value of
h(F,u) tells us how far F' extends in the direction u (possibly with the negative
sign). A useful and easily verified feature of the functional h(-, -) is that

h(F1 @ Fy, u) = h(Fl,u) + h(FQ,’LL).

The next lemma follows directly by a straightforward check.

LEMMA 2.1. If X ~ IDM(K, X, A) is an M-infinitely-divisible random con-
vex compact set in R%, then for every n € N and u := (u1,uz, . .., u,) € (RH)"
the random vector

(R(X, u1), B(X, ua), . h(X,un)) T
is infinitely divisible TD(ag, X4, Az ), where
(aa)i = h(K,u;), i=1,...,n,
(Xa)ij = uiEujT, i,j=1,...,n,
Aa(4) = A(671(4)), ACR”,
and ¢u(K) = (h(K,w1), ..., h(K,un))", K € cok.

We are now in a position to establish the main result of this section.

THEOREM 2.2. An M-infinitely-divisible convex compact set X is infinitely
associated if and only if it has no Gaussian summand and its Lévy measure con-
centrates on the family of sets containing the origin.
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Proof. The “if” part may be proved in much the same way as Theorem 2.1.
For the “only if” part we first prove that an infinitely associated M-infinitely-
divisible X cannot have a Gaussian summand. Let X =45 K ® £ ®& Z and
X (t) =4 tK @ \/t£ @ Z; as in Definition 2.2. For ¢ € (0, 1] define functions

hi(X(t)) = h(tK ® VI ® Zy,e1) = th(K, e1) + V(& e1) + h(Zy, e1),
ho(X(t)) = h(tK ® VI @ Zy, —e1) = th(K, —e1) — V(&  e1) + h(Z, —e1),

where e; is a basis vector in R?. Both h; and hy are non-decreasing functions
of the set X. If X is infinitely associated, then for all non-decreasing functions
f,g:R?—> R

Cov(f((m (X)), ha(X(1)) ") 9( (1 (X (1), h2(X(®)")) > 0,

because f(hi(-), ha(-)) and g(h1(-), ha(-)) are non-decreasing. This yields infinite

T
association of the vector <h1 (X(1)), ho(X (t))) . Since this vector is infinitely
divisible as in Lemma 2.1 and

(fu(X(t))) _ t( WK, e1) > N ﬁ< (€ e1) ) N < h(Z, 1) )
hQ(X(t)) h(K, —81) —<£,€1> h(Zt,—el) ’
by Proposition 1.3 the matrix X in its Lévy—Kchinchin representation must have
nonnegative coefficients. Thus Cov(({,e1), —(&,e1)) > 0, and hence we have
Var((€, e1)) = 0, which implies that (£, 1) is a constant random variable. A simi-
lar result can be obtained for the remaining basis vectors e, . . . , e,,. Consequently,
& cannot be a non-degenerate Gaussian vector, which proves our assertion.

What is left to show is that the Lévy measure A of the infinitely associated
M-infinitely-divisible random set X concentrates on the family of sets in co/C
containing the origin. We proceed by contradiction: suppose the Lévy measure
does not have this property. It means that for some v € R? and ¢ > 0 we get
A({K, h(K,u) < —c}) > 0. However, the fact that h(K,u) < —c < 0 implies
that h(K,—u) > ¢ > 0. Consequently, putting @ := (u,—u) and letting
Az = A(y,—y) be as in Lemma 2.1 above we see that Ay assigns non-zero mass
to R_ x Ry. Now, consider the random vector (h(X,u), h(X, —u))T. On the
one hand, by Lemma 2.1 it is infinitely divisible with Lévy measure Ajz. On the
other hand, it is also infinitely associated because so is X and the mapping K +—
(h(K,u), h(K, —u))T is non-decreasing on colC with respect to the inclusion
ordering. Putting these conclusions together yields a contradiction with Propo-
sition 1.3 stating that A; concentrates on (R, )2 U (R_)2. This completes the
proof. m
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3. ASSOCIATION FOR U-INFINITELY-DIVISIBLE RANDOM SETS

The notion of max-infinitely-divisible random vector can be transferred onto
the ground of the theory of random sets in two different ways. First, following
Matheron [10], we can say that a random closed set X C R? is infinitely divisible
for unions (or union-infinitely-divisible) if for alln > 1

X =g XpnUXpnU...UXn,

where X1, Xn2, ..., X, are i.i.d. random closed sets. Note that no convexity
assumptions are present here.

As it was shown in Matheron [10] (see also [12], Subsection 4.1.2), every
union-infinitely-divisible random closed set can by represented as the set-theoretic
union of a deterministic closed set and a collection of sets constituting a Pois-
son point process on the family F of closed subsets of R?. When combined with
Proposition 1.1 stating the association of Poisson point processes and with the fact
that the operation of taking unions is a non-decreasing operation from 2% to F,
this yields the following theorem:

THEOREM 3.1. Every union-infinitely-divisible random closed set is associ-
ated.

If we wish to stay within the family of convex compact random sets, we need
to make the sum of sets X1, Xy2, ..., Xnn convex. So a random convex compact
set X C R%is called infinitely divisible for convex hulls of unions if for all n > 1

X =4 @(an UXnoU... UXnn),

where X1, Xp2, ..., Xn, are i.i.d. random convex compact sets (Definition 4.4.1
in [12]).

It is worth to notice that the support function of ¢6(X,,1 U X2 U ... U Xpp)
is equal to the maximum of support functions of sets X1, Xp2,..., Xy, which
confirms the correspondence of infinite divisibility for convex hulls of unions for
random sets and max-infinite-divisibility of random vectors.

The next proposition, due to Giné et al. [5], characterizes the structure of non-
empty convex compact sets infinitely divisible for convex hulls of unions.

PROPOSITION 3.1. X is a non-empty convex compact set infinitely divisible
for convex hulls of unions iff there exist a non-empty convex compact set H € R¢
and a locally finite Borel measure v on

HH ={K €co#\{0}; KO HK+#H)}
fulfilling the condition

{Kext, K¢ D} <oo, DexH,
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such that -
X =g (HU (U K)).
i=1

where {K;} are the points of the Poisson point process on co# \ {0} with the
intensity measure v.

We conclude the following

THEOREM 3.2. Every non-empty convex compact set infinitely divisible for
convex hulls of unions is associated.

Proof. Itis enough to notice that a set fulfilling the assumptions of our the-
orem arises as a non-decreasing mapping { K1, K»,...} — @(H U UZ KZ) of a
Poisson point process on co.# \ {0}, which yields our assertion as a conclusion of
Proposition 1.1. =

It should be noted that the above theorem applies in particular to convex hulls
of finite Poisson point processes, which are an example of convex compact sets
infinitely divisible for convex hulls of unions and which have attracted consid-
erable interest in stochastic geometry since the seminal work of Rényi and Su-
lanke; see e.g. [20] for a classical survey and [15], [22] and references therein for
some newest developments. For definiteness consider the following set-up: write
C for the convex hull of a homogeneous Poisson point process in a unit ball in RY.
A rich supply of limit theorems is known for various functionals of C; as t — oo
(see ibidem), but much less is known about the finite ¢ behavior of the poly-
tope C;. In this context it may be useful to use Theorem 3.2 to conclude for all ¢
the association of the vector of the following natural increasing functionals of C':

1. volume,

2. surface area,

3. mean width (normalized integral of the support function), which is propor-
tional to perimeter for d = 2 (see [21], p. 210),

4. more generally, intrinsic volumes of all orders of C; (see ibidem, Chap-
ter 4).

Note that these observations do not apply to the number of vertices of C;
which is another functional of considerable interest but whose dependence on C;
is in general not monotone.
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